Journal Article FZJ-2020-02918

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Conceptual studies on spectroscopy and radiation diagnostic systems for plasma control on DEMO

 ;  ;  ;  ;  ;

2019
Elsevier New York, NY [u.a.]

Fusion engineering and design 146, 2297 - 2301 () [10.1016/j.fusengdes.2019.03.176]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The roadmap to the realization of fusion energy describes a path towards the development of a DEMO tokamak reactor, which is expected to provide electricity into the grid by the mid of the century (Romanelli, 2013). The DEMO diagnostic and control (D&C) system must provide measurements with high reliability and accuracy, not only constrained by space restrictions in the blanket, but also by adverse effects induced by neutron, gamma radiation and particle fluxes. In view of the concept development for DEMO control, an initial selection of suitable diagnostics has been obtained (Biel et al., 2019). This initial group of diagnostic consists of 6 methods: Microwave diagnostics, thermo-current measurements, magnetic diagnostics, neutron/gamma diagnostics, IR interferometry/polarimetry, and a variety of spectroscopic and radiation measurement systems. A key aspect for the implementation, performance and lifetime assessment of these systems on DEMO, is mainly attributable to their location, that must be well protected, and meet their own set of specific requirements. With this in mind, sightline analysis, space consumption and the evaluation of optical systems are the main assessment tools to obtain a high level of integration, reliability and robustness of all this instrumentation; essential features in future commercial fusion power nuclear plants. In this paper we concentrate on spectroscopic and radiation measurement systems that require sightlines over a large range of plasma regions and inner reactor surfaces. Moreover, this paper outlines the main results and strategies adopted in this early stage of DEMO conceptual design to assess the feasibility of this initial set of diagnostic methods based on sightlines and the integration of these needed for DEMO D&C.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
Research Program(s):
  1. 174 - Plasma-Wall-Interaction (POF3-174) (POF3-174)

Appears in the scientific report 2020
Database coverage:
Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-1
Workflow collections > Public records
IEK > IEK-4
Publications database
Open Access

 Record created 2020-08-25, last modified 2024-07-08


Published on 2019-04-05. Available in OpenAccess from 2021-04-05.:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)