Journal Article FZJ-2020-02978

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Characterization of grain boundary disconnections in SrTiO3 part I: the dislocation component of grain boundary disconnections

 ;  ;  ;  ;

2019
Springer Science + Business Media B.V Dordrecht [u.a.]

Journal of materials science 54(5), 3694 - 3709 () [10.1007/s10853-018-3096-4]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: High-resolution transmission electron microscopy is often used to characterize grain boundaries, but it is usually limited to special high symmetry boundaries with a high density of coincident sites. For these ‘special’ boundaries, both crystals can be brought into a low-index zone-axis with the boundary plane parallel to the incident electron beam. In this case the atomistic structure of the boundary can be solved, which is not possible for other, more general grain boundaries. In the present study, general grain boundaries in SrTiO3 were analyzed using aberration-corrected transmission electron microscopy and scanning transmission electron microscopy. These boundaries included at least one type of disconnection (i.e., defects that can have a step and/or a dislocation component). Since the dislocation component of disconnections along general grain boundaries cannot be fully resolved using the methods currently available, a plane matching approach was used to compare disconnections at different boundaries. Using this approach, the dislocation component of the disconnections was partially characterized and was found to have an edge component mainly parallel to {100} and {110}, close to normal to the macroscopic grain boundary plane. The step component of the disconnections was found to be aligned mainly parallel to the same crystallographic planes ({100} and {110}).

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2020
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Springer ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database

 Record created 2020-08-28, last modified 2021-01-30


Fulltext:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)