SeNSE

Lithium-ion battery with silicon anode, nickel-rich cathode and in-cell sensor for electric vehicles

CoordinatorENWIRES ; NORTHVOLT AB ; FPT MOTORENFORSCHUNG AG ; Austrian Institute of Technology ; WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER ; SOLVIONIC ; EIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT ; LITHOPS SRL ; HUNTSMAN ADVANCED MATERIALS (SWITZERLAND) GMBH ; Forschungszentrum Jülich ; Coventry University
Grant period2020-02-01 - 2024-01-31
Funding bodyEuropean Union
Call numberH2020-LC-BAT-2019
Grant number875548
IdentifierG:(EU-Grant)875548

Note: The SeNSE proposal aims at enabling next generation lithium-ion batteries with a silicon-graphite composite anode and a nickel-rich NMC cathode to reach 750 Wh/L. Cycling stability is the key challenge for the adoption of this cell chemistry. The objective is to reach 2000 deep cycles by (i) reducing the surface reactivity of the active materials by a combination of novel film-forming electrolyte additives and active materials coatings, (ii) compensating irreversible lithium losses during the first cycles employing pre-lithiated silicon and providing an on-demand reservoir of excess lithium in the cathode, (iii) identifying and controlling critical cycling parameters with data provided from in-cell sensors. Adaptive fast charging protocols will be integrated into the battery management system based on dynamic in-cell sensor data and by implementing thermal management concepts on materials and electrode level. To improve the sustainability of the battery and to lower production cost, the content of the critical raw materials cobalt and natural graphite will be reduced. Enabled by protective coatings, aqueous slurry processing will be developed for the cathode. Costs will be further lowered and energy density improved by the development of thinner textured current collector foils offering enhanced adhesion. The feasibility and scalability of the SeNSE battery technology with respect to the call targets will be demonstrated through 25 Ah pouch cell prototypes and a 1 kWh module. Scalability to the gigawatt scale and cost-effectiveness of the proposed solutions, including aspects of recycling and second-life use, will be continuously monitored via regular briefings led by Northvolt, which currently undertakes one of the most ambitious efforts to establish a European cell manufacturing plant at scale. To strengthen the European IP portfolio in the battery field, patent applications are the preferred way of dissemination of technology developed within SeNSE.
     

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;
Effective SEI Formation via Phosphazene‐Based Electrolyte Additives for Stabilizing Silicon‐Based Lithium‐Ion Batteries
Advanced energy materials 13(26), 2203503 () [10.1002/aenm.202203503] OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;
Synergistic role of functional electrolyte additives containing phospholane-based derivative to address interphasial chemistry and phenomena in NMC811||Si-graphite cells
Journal of power sources 557, 232570 - () [10.1016/j.jpowsour.2022.232570] OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;
Advanced Battery Materials and Interfaces: A European Perspective
Advanced materials interfaces 8(9), 2102538 () [10.1002/admi.202102538] OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Poster (Other)  ;  ;  ;  ;  ;  ;  ;
Coating-Doping Interactions in commercial Ni-rich NCM Cathode Materials for high-energy Lithium Ion Batteries
15th International conference on materials chemistry, MC15, WWU münstervirtual, WWU münster, UK, 12 Jul 2021 - 15 Jul 20212021-07-122021-07-15 OpenAccess  Download fulltext Files  Download fulltextFulltext Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;
Mechanistic Insights into the Pre‐Lithiation of Silicon/Graphite Negative Electrodes in “Dry State” and After Electrolyte Addition Using Passivated Lithium Metal Powder
Advanced energy materials 11(25), 2100925 () [10.1002/aenm.202100925] OpenAccess  Download fulltext Files  Download fulltextFulltext Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Datensatz erzeugt am 2020-09-04, letzte Änderung am 2023-02-07



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)