Journal Article FZJ-2020-03090

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Potential of Dual-Frequency Radar and Microwave Radiometer Synergy for Water Vapor Profiling in the Cloudy Trade-Wind Environment

 ;  ;

2020
AMS Boston, Mass.

Journal of atmospheric and oceanic technology 37(11), 1973–1986 () [10.1175/JTECH-D-19-0110.1]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: High-resolution boundary-layer water vapor profile observations are essential for understanding the interplay between shallow convection, cloudiness and climate in the trade wind atmosphere. As current observation techniques can be limited by low spatial or temporal resolution, the synergistic benefit of combining ground-based microwave radiometer (MWR) and dual-frequency radar is investigated by analysing the retrieval information content and uncertainty. Synthetic MWR brightness temperatures, as well as simulated dual wavelength ratios of two radar frequencies are generated for a combination of Ka- and W-band (KaW), as well as differential absorption radar (DAR) G-band frequencies (167 and 174:8 GHz, G2). The synergy analysis is based on an optimal estimation scheme by varying the configuration of the observation vector. Combining MWR and KaW only marginally increases the retrieval information content. The synergy of MWR with G2 radar is more beneficial due to increasing degrees of freedom (4.5), decreasing retrieval errors, and a more realistic retrieved profile within the cloud layer. The information and profile below and within the cloud is driven by the radar observations, whereas the synergistic benefit is largest above the cloud layer, where information content is enhanced compared to a MWR-only or DAR-only setup. For full synergistic benefits, however, G-band radar sensitivities need to allow full-cloud profiling; in this case, the results suggest that a combined retrieval of MWR and G-band DAR can help close the observational gap of current techniques.

Classification:

Contributing Institute(s):
  1. Troposphäre (IEK-8)
Research Program(s):
  1. 243 - Tropospheric trace substances and their transformation processes (POF3-243) (POF3-243)

Appears in the scientific report 2020
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; Free to read ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > ICE > ICE-3
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
IEK > IEK-8
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-09-09, letzte Änderung am 2024-07-12