Journal Article FZJ-2020-03122

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation

 ;  ;  ;  ;  ;  ;  ;  ;

2020
BioMed Central London

Biotechnology for biofuels 13(1), 155 () [10.1186/s13068-020-01796-8]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: BackgroundBiomass recalcitrance towards pretreatment and further processing can be related to the compositional and structural features of the biomass. However, the exact role and relative importance to those structural attributes has still to be further evaluated. Herein, ten different types of biomass currently considered to be important raw materials for biorefineries were chosen to be processed by the recently developed, acid-catalyzed OrganoCat pretreatment to produce cellulose-enriched pulp, sugars, and lignin with different amounts and qualities. Using wet chemistry analysis and NMR spectroscopy, the generic factors of lignocellulose recalcitrance towards OrganoCat were determined.ResultsThe different materials were processed applying different conditions (e.g., type of acid catalyst and temperature), and fractions with different qualities were obtained. Raw materials and products were characterized in terms of their compositional and structural features. For the first time, generic correlation coefficients were calculated between the measured chemical and structural features and the different OrganoCat product yields and qualities. Especially lignin-related factors displayed a detrimental role for enzymatic pulp hydrolysis, as well as sugar and lignin yield exhibiting inverse correlation coefficients. Hemicellulose appeared to have less impact, not being as detrimental as lignin factors, but xylan-O-acetylation was inversely correlated with product yield and qualities.ConclusionThese results illustrate the role of generic features of lignocellulosic recalcitrance towards acidic pretreatments and fractionation, exemplified in the OrganoCat strategy. Discriminating between types of lignocellulosic biomass and highlighting important compositional variables, the improved understanding of how these parameters affect OrganoCat products will ameliorate bioeconomic concepts from agricultural production to chemical products. Herein, a methodological approach is proposed.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2020-09-14, last modified 2022-09-30