Journal Article FZJ-2020-03849

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Diurnal dynamics of non‐photochemical quenching in Arabidopsis npq mutants assessed by solar‐induced fluorescence and reflectance measurements in the field

 ;  ;  ;  ;  ;

2021
Wiley-Blackwell Oxford [u.a.]

The new phytologist 229(4), 2104-2119 () [10.1111/nph.16984]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Solar‐induced fluorescence (SIF) is highly relevant in mapping photosynthesis from remote‐sensing platforms. This requires linking SIF to photosynthesis and understanding the role of nonphotochemical quenching (NPQ) mechanisms under field conditions. Hence, active and passive fluorescence were measured in Arabidopsis with altered NPQ in outdoor conditions. Plants with mutations in either violaxanthin de‐epoxidase (npq1) or PsbS protein (npq4) exhibited reduced NPQ capacity. Parallel measurements of NPQ, photosystem II efficiency, SIF and spectral reflectance (ρ) were conducted diurnally on one sunny summer day and two consecutive days during a simulated cold spell. Results showed that both npq mutants exhibited higher levels of SIF compared to wild‐type plants. Changes in reflectance were related to changes in the violaxanthin–antheraxanthin–zeaxanthin cycle and not to PsbS‐mediated conformational changes. When plants were exposed to cold temperatures, rapid onset of photoinhibition strongly quenched SIF in all lines. Using well‐characterized Arabidopsis npq mutants, we showed for the first time the quantitative link between SIF, photosynthetic efficiency, NPQ components and leaf reflectance. We discuss the functional potential and limitations of SIF and reflectance measurements for estimating photosynthetic efficiency and NPQ in the field.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)
  2. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; National-Konsortium ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-10-06, letzte Änderung am 2023-01-11


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)