Journal Article FZJ-2020-03872

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Picosecond multilevel resistive switching in tantalum oxide thin films

 ;  ;  ;  ;  ;  ;

2020
Macmillan Publishers Limited, part of Springer Nature [London]

Scientific reports 10(1), 16391 () [10.1038/s41598-020-73254-2]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The increasing demand for high-density data storage leads to an increasing interest in novel memory concepts with high scalability and the opportunity of storing multiple bits in one cell. A promising candidate is the redox-based resistive switch repositing the information in form of different resistance states. For reliable programming, the underlying physical parameters need to be understood. We reveal that the programmable resistance states are linked to internal series resistances and the fundamental nonlinear switching kinetics. The switching kinetics of Ta2O5-based cells was investigated in a wide range over 15 orders of magnitude from 105 s to 250 ps. The capacitive charging time of our device limits the direct observation of the set time below 770 ps, however, we found indication for an intrinsic switching speed of 10 ps at a stimulus of 3 V. On all time scales, multi-bit data storage capabilities were demonstrated. The elucidated link between fundamental material properties and multi-bit data storage paves the way for designing resistive switches for memory and neuromorphic applications.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
  3. JARA Institut Green IT (PGI-10)
Research Program(s):
  1. 524 - Controlling Collective States (POF3-524) (POF3-524)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-10
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-10-07, last modified 2021-01-30