Journal Article FZJ-2020-04154

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
HOPS: high-performance library for (non-)uniform sampling of convex-constrained models

 ;  ;  ;

2020
Oxford Univ. Press Oxford

Bioinformatics 37(12), 1776-1777 () [10.1093/bioinformatics/btaa872]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: The C++ library Highly Optimized Polytope Sampling (HOPS) provides implementations of efficient and scalable algorithms for sampling convex-constrained models that are equipped with arbitrary target functions. For uniform sampling, substantial performance gains were achieved compared to the state-of-the-art. The ease of integration and utility of non-uniform sampling is showcased in a Bayesian inference setting, demonstrating how HOPS interoperates with third-party software.

Classification:

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 583 - Innovative Synergisms (POF3-583) (POF3-583)

Appears in the scientific report 2021
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2020-10-26, letzte Änderung am 2023-01-11


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)