Journal Article FZJ-2020-05210

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nonlinear scheduling with time‐variable electricity prices using sensitivity‐based truncations of wavelet transforms

 ;  ;

2020
Wiley Hoboken, NJ

AIChE journal 66(10), e16986 () [10.1002/aic.16986]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We propose an algorithm for scheduling subject to time‐variable electricity prices using nonlinear process models that enables long planning horizons with fine discretizations. The algorithm relies on a reduced‐space formulation and enhances our previous work (Schäfer et al., Comput Chem Eng, 2020;132:106598) by a sensitivity‐based refinement procedure. We therein expose the coefficients of the wavelet transform of the time series of independent process variables to the optimizer. The problem size is reduced by truncating the transform and iteratively adjusted using Lagrangian multipliers. We apply the algorithm to the scheduling of a multi‐product air separation unit. The nonlinear power consumption characteristic is replaced by an artificial neural network trained on data from a rigorous model. We demonstrate that the proposed algorithm reduces the number of optimization variables by more than one order of magnitude, whilst furnishing feasible schedules with insignificant losses in objective values compared to solutions considering the full dimensionality.

Classification:

Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 899 - ohne Topic (POF3-899) (POF3-899)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > ICE > ICE-1
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-10
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-12-11, letzte Änderung am 2024-07-12


OpenAccess:
aic.16986 - Volltext herunterladen PDF
pasc_AIChEJ2020_SensBasedRefine - Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)