Journal Article FZJ-2021-00229

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
In‐Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive Switches

 ;  ;  ;

2020
Wiley-VCH Verlag GmbH & Co. KGaA Weinheim

Advanced intelligent systems 2(10), 2070100 - () [10.1002/aisy.202070100]

This record in other databases:

Please use a persistent id in citations:   doi:

Abstract: In article number 2000134, Stephan Menzel and co‐workers explore a computation in‐memory concept for binary vector‐matrix multiplications based on complementary resistive switches. Experimental results on a small‐scale demonstrator are shown and the influence of device variability is investigated. The simulated inference of a 1‐layer fully connected binary neural network trained on the MNIST data set resulted in an accuracy of nearly 86%.

Classification:

Note: Cover Picture

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA Institut Green IT (PGI-10)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 524 - Controlling Collective States (POF3-524) (POF3-524)
  2. Advanced Computing Architectures (aca_20190115) (aca_20190115)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; DOAJ Seal ; Fees
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-FIT
Institutssammlungen > PGI > PGI-10
Institutssammlungen > PGI > PGI-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-01-12, letzte Änderung am 2021-01-27


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)