Journal Article FZJ-2021-00613

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Contrasting depth distribution of colloid-associated phosphorus in the active and abandoned sections of an alluvial fan in a hyper-arid region of the Atacama Desert

 ;  ;  ;  ;  ;  ;  ;  ;

2020
Elsevier Science Amsterdam [u.a.]

Global and planetary change 185, 103090 - () [10.1016/j.gloplacha.2019.103090]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Colloids and their subset nanoparticles are key soil constituents for nutrient and Organic Carbon (OC) storage and transport, yet little is known about their specific role in overall transfer of elements under hyper-arid conditions. We analyzed the Water Dispersible Colloids (WDCs) of two adjacent soil profiles, located either on the active (named: Fan) or passive (named: Crust) sections of an alluvial fan. Colloidal particles (<500 nm) were fractionated using Asymmetric Field-Flow-Field Fractionation (AF4), which was coupled online to an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) and an Organic Carbon Detector (OCD) to detect the composition of size-fractionated colloids. Three size categories of particles were identified: nanoparticles (0.6–24 nm), fine colloids (24–210 nm), and medium colloids (210–500 nm). The two profiles differed distinctively in vertical WDC distribution and associated phosphorus (P) content. Fractograms of the Crust profile predominantly showed fine colloids, whereas the medium-sized colloids dominated those of the Fan. Furthermore, the highest colloid content in the Crust profile was found at the surface, while in the Fan, colloids accumulated at 10–20 cm depth, thus overall reflecting the different genesis and infiltration capacities of the soils. Despite very low concentration of colloidal P in these hyper-arid soils, a strong correlation between colloidal P and calcium (Ca), Silica (Si), aluminum (Al), iron (Fe), and OC content were found. This also revealed Ca-phosphates as the primary P retention from, with the association of P to phyllosilicates and Fe/Al (hydr-) oxides as the main soil colloidal fractions. Overall, our results did highlight that small local scale differences in topographic-derived distribution of water flow pathways, defined the formation of the crust-like surfaces, and ultimately the overall movement and distribution of nanoparticles and colloids in soil profiles under hyper-arid conditions.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-01-22, last modified 2021-02-08


Published on 2019-11-27. Available in OpenAccess from 2021-11-27.:
supplementary information - Download fulltext DOCX
Ghazal Moradi et al_GPC_2020_postprint - Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)