Journal Article FZJ-2021-00968

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Distinct neural networks subserve placebo analgesia and nocebo hyperalgesia

 ;  ;  ;  ;  ;

2021
Academic Press Orlando, Fla.

NeuroImage 231, 117833 () [10.1016/j.neuroimage.2021.117833]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Neural networks involved in placebo analgesia and nocebo hyperalgesia processes have been widely investigated with neuroimaging methods. However, few studies have directly compared these two processes and it remains unclear whether common or distinct neural circuits are involved. To address this issue, we implemented a coordinate-based meta-analysis and compared neural representations of placebo analgesia (30 studies; 205 foci; 677 subjects) and nocebo hyperalgesia (22 studies; 301 foci; 401 subjects). Contrast analyses confirmed placebo-specific concordance in the right ventral striatum, and nocebo-specific concordance in the dorsal anterior cingulate cortex (dACC), left posterior insula and left parietal operculum during combined pain anticipation and administration stages. Importantly, no overlapping regions were found for these two processes in conjunction analyses, even when the threshold was low. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity (RSFC) analyses on key regions further confirmed the distinct brain networks underlying placebo analgesia and nocebo hyperalgesia. Together, these findings indicate that the placebo analgesia and nocebo hyperalgesia processes involve distinct neural circuits, which supports the view that the two phenomena may operate via different neuropsychological processes.Keywords: Activation likelihood estimation; Functional decoding; Meta-analysis; Meta-analytic connectivity modeling; Nocebo hyperalgesia; Placebo analgesia; Resting-state functional connectivity.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 525 - Decoding Brain Organization and Dysfunction (POF4-525) (POF4-525)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-02-08, last modified 2021-06-28


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)