Journal Article FZJ-2021-01233

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Adaptation and validation of the ParSWMS numerical code for simulation of water flow and solute transport in soilless greenhouse substrates

 ;  ;  ;

2021
Elsevier Amsterdam [u.a.]

Journal of hydrology 596, 126053 - () [10.1016/j.jhydrol.2021.126053]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Numerical simulation of three-dimensional water flow and solute transport in containerized variably saturated soilless substrates with complex hydraulic properties and boundary conditions necessitates high-resolution dis­ cretization of the spatial and temporal domains, which commonly leads to several million nodes requiring nu­ merical evaluation. Even today’s computing prowess of workstations is not adequate to tackle such problems within a reasonable timeframe, especially when numerous realizations are required to optimize the geometry, substrate properties, and irrigation and fertigation management of soilless plant growth modules. Hence, the parallelization of the numerical code and utilization of high performance computing (HPC) are essential. Here, we adapted and applied the ParSWMS parallelized code that is amenable to solving the 3D Richards equation for water flow and the convection-dispersion equation for solute transport subject to linear solute adsorption. The code was modified to allow for nonlinear equilibrium solute adsorption with new boundary conditions and applied to simulate water flow and nitrogen and phosphorus transport in containerized soilless substrates. Multi- solute transport simulations with the modified Linux ParSWMS code were first performed on a workstation and referenced to the Windows-based HYDRUS (2D/3D) numerical code. After confirming the agreement between the modified ParSWMS code and HYDRUS (2D/3D), various preconditioners and iterative solvers were evaluated to find the computationally most efficient combinations. The performance of the modified ParSWMS code and its stability were compared to HYDRUS (2D/3D) simulations for three soilless substrates consisting of horticultural perlite, volcanic tuff, and a volcanic tuff/coconut coir mixture. Considering the solute mass balance error as a stability measure, ParSWMS outperformed HYDRUS (2D/3D). Moreover, simulations with the modified ParSWMS code were about 22% faster than simulations with HYDRUS (2D/3D) on the workstation. Tests of the modified ParSWMS on two HPC clusters with 28 and 94 cores revealed a potential computational speedup of 94% relative to the HYDRUS (2D/3D) simulations performed on the workstation.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217) (POF4-217)
  2. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-03-01, letzte Änderung am 2021-12-09


Published on 2021-02-10. Available in OpenAccess from 2023-02-10.:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)