Contribution to a conference proceedings FZJ-2021-01285

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Super-Resolution of Large Volumes of Sentinel-2 Images with High Performance Distributed Deep Learning

 ;  ;

2020

2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online eventOnline event, Hawaii, 26 Sep 2020 - 2 Oct 20202020-09-262020-10-02 617 - 620 () [10.1109/IGARSS39084.2020.9323734]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: This work proposes a novel distributed deep learning modelfor Remote Sensing (RS) images super-resolution. High PerformanceComputing (HPC) systems with GPUs are used toaccelerate the learning of the unknown low to high resolutionmapping from large volumes of Sentinel-2 data. The proposeddeep learning model is based on self-attention mechanismand residual learning. The results demonstrate that stateof-the-art performance can be achieved by keeping the size ofthe model relatively small. Synchronous data parallelism isapplied to scale up the training process without severe performanceloss. Distributed training is thus shown to speed uplearning substantially while keeping performance intact.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 512 - Data-Intensive Science and Federated Computing (POF3-512) (POF3-512)
  2. HBP - The Human Brain Project (604102) (604102)

Appears in the scientific report 2021
Database coverage:
Medline ; OpenAccess ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-03-04, letzte Änderung am 2023-01-11


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)