Home > Publications database > Smart Tungsten-based Alloys for a First Wall of DEMO |
Journal Article | FZJ-2021-01484 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2020
Elsevier
New York, NY [u.a.]
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/27478 doi:10.1016/j.fusengdes.2020.111742
Abstract: During an accident with loss-of-coolant and air ingress in DEMO, the temperature of tungsten first wall cladding may exceed 1000 °C and remain for months leading to tungsten oxidation. The radioactive tungsten oxide can be mobilized to the environment at rates of 10–150 kg per hour. Smart tungsten-based alloys are under development to address this issue. Alloys are aimed to function as pure tungsten during regular plasma operation of DEMO. During an accident, alloying elements will create a protective layer, suppressing release of W oxide.Bulk smart alloys were developed by using mechanical alloying and field-assisted sintering technology. The mechanical alloying process was optimized leading to an increased powder production by at least 40 %. Smart alloys and tungsten were tested under a variety of DEMO-relevant plasma conditions. Both materials demonstrated similar sputtering resistance to deuterium plasma. Under accident conditions, alloys feature a 40-fold reduction of W release compared to that of pure tungsten.
![]() |
The record appears in these collections: |