Journal Article FZJ-2021-01548

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Machine learning to alleviate Hubbard-model sign problems

 ;  ;  ;  ;

2021
Inst.77671 Woodbury, NY

Physical review / B 103(12), 125153 () [10.1103/PhysRevB.103.125153]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Lattice Monte Carlo calculations of interacting systems on non-bipartite lattices exhibit an oscillatory imaginary phase known as the phase or sign problem, even at zero chemical potential. One method to alleviate the sign problem is to analytically continue the integration region of the state variables into the complex plane via holomorphic flow equations. For asymptotically large flow times the state variables approach manifolds of constant imaginary phase known as Lefschetz thimbles. However, flowing such variables and calculating the ensuing Jacobian is a computationally demanding procedure. In this paper we demonstrate that neural networks can be trained to parameterize suitable manifolds for this class of sign problem and drastically reduce the computational cost. We apply our method to the Hubbard model on the triangle and tetrahedron, both of which are non-bipartite. At strong interaction strengths and modest temperatures the tetrahedron suffers from a severe sign problem that cannot be overcome with standard reweighting techniques, while it quickly yields to our method. We benchmark our results with exact calculations and comment on future directions of this work.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. Theorie der Starken Wechselwirkung (IAS-4)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2021
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-4
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-03-26, letzte Änderung am 2022-01-11


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)