Journal Article FZJ-2021-01559

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Long-term power degradation analysis of crystalline silicon PV modules using indoor and outdoor measurement techniques

 ;  ;

2021
Elsevier Science Amsterdam [u.a.]

Renewable & sustainable energy reviews 144, 111005 - () [10.1016/j.rser.2021.111005]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Annual degradation rates of PV modules are important in the yield prediction. For a high-quality PV module, these rates are lower than the measurement uncertainty of a nominal power measurement performed in todays most advanced certified photovoltaic reference laboratory. Therefore, the analysis requires a well thought out methodology that can compare the data relative to each other or relative to an unused module stored in the dark on an annual base. Over the past 10 years, several multi c-Si and HIT modules have been accurately monitored in a string and single module setup by an outdoor performance measurement system. Additionally, all modules have been dismantled and measured using an indoor flasher measurement system once every year. With this unique measurement setup, the annual degradation rates of multi c-Si modules and HIT modules are quantified based on three different analysis methodologies. The multi c-Si modules showed an average annual degradation rate of 0.18% ± 0.06% and 0.29% ± 0.06% measured by the outdoor and indoor system, respectively. The indoor analysis of the HIT modules yielded an average annual degradation of 0.26% ± 0.05%. That corresponds to half of the degradation observed by the outdoor analysis method. Further evaluations of the performance ratio PR confirmed the results gained by the indoor methodology. The comparison of the standard PR with a temperature-corrected PR’STC for both technologies showed that the benefit of the lower temperature coefficient of the HIT technology is eliminated by its worse low light behaviour.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IEK-11)
Research Program(s):
  1. 121 - Photovoltaik und Windenergie (POF4-121) (POF4-121)

Appears in the scientific report 2021
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-2
Workflow collections > Public records
IEK > IEK-11
Publications database
Open Access

 Record created 2021-03-29, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)