Journal Article FZJ-2021-01848

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Motility-Induced Inter-Particle Correlations and Dynamics: a Microscopic Approach for Active Brownian Particles

 ;  ;

2021
Royal Soc. of Chemistry London

Soft matter 17, 5613-5632 () [10.1039/D1SM00426C]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Amongst the theoretical approaches towards dynamics and phase behaviour of suspensions of active Brownian particles (ABPs), no attempt has been made to specify motility induced inter-particle correlations as quantified by the pair-correlation function. Here we derive expressions for the pair-correlation function for ABPs with very short-ranged direct interactions for small and large swimming velocities and low concentrations. The pair-correlation function is the solution of a differential equation that is obtained from the Fokker-Planck equation for the probability density function of the positions and orientations of the ABPs. For large swimming Peclet numbers lambda, the pair-correlation function is highly asymmetric. The pair-correlation function attains a large value ~lambda within a small region of spatial extent ~1/lambda near contact of the ABPs when the ABPs approach each other. The pair-correlation function is small within a large region of spatial extent ~lambda^1/3 when the ABPs move apart, with a contact value that is essentially zero. From the explicit expressions for the pair-correlation function, Fick's diffusion equation is generalized to include motility. It is shown that mass transport, in case of large swimming velocities, is dominated by a preferred swimming direction that is induced by concentration gradients. The expression for the pair-correlation function derived in this paper could serve as a starting point to obtain approximate results for high concentrations, which could then be employed in a first-principle analysis of the dynamics and phase behaviour of ABPs at higher concentrations.

Classification:

Contributing Institute(s):
  1. Biomakromolekulare Systeme und Prozesse (IBI-4)
Research Program(s):
  1. 524 - Molecular and Cellular Information Processing (POF4-524) (POF4-524)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; OpenAccess ; Allianz-Lizenz / DFG ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-4
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-04-21, letzte Änderung am 2022-09-30


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)