Journal Article FZJ-2021-02100

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows

 ;  ;  ;  ;  ;  ;  ;

2021
Elsevier ScienceDirect New York, NY [u.a.]

Proceedings of the Combustion Institute 38(2), 2617 - 2625 () [10.1016/j.proci.2020.06.022]

This record in other databases:  

Please use a persistent id in citations:   doi:

Classification:

Contributing Institute(s):
  1. JARA - HPC (JARA-HPC)
  2. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. Using deep learning to predict statistics of turbulent flows at high Reynolds numbers (jhpc55_20190501) (jhpc55_20190501)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Essential Science Indicators ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-HPC
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-05-10, letzte Änderung am 2023-02-15


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)