http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows
Bode, M. (Corresponding author)FZJ* ; Gauding, M. ; Lian, Z. ; Denker, D. ; Davidovic, M. ; Kleinheinz, K. ; Jitsev, J.FZJ* ; Pitsch, H.
2021
Elsevier ScienceDirect
New York, NY [u.a.]
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/30393 doi:10.1016/j.proci.2020.06.022
Contributing Institute(s):
- JARA - HPC (JARA-HPC)
- Jülich Supercomputing Center (JSC)
Research Program(s):
- 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
- Using deep learning to predict statistics of turbulent flows at high Reynolds numbers (jhpc55_20190501) (jhpc55_20190501)
Appears in the scientific report
2021
Database coverage:
;

;

; Clarivate Analytics Master Journal List ; Essential Science Indicators ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection