Journal Article FZJ-2021-03129

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
High‐throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Wiley-Blackwell Oxford [u.a.]

Plant, cell & environment 44(9), 2858-2878 () [10.1111/pce.14136]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II (urn:x-wiley:01407791:media:pce14136:pce14136-math-0072) and the kinetics of electron transport measured by reoxidation rates (urn:x-wiley:01407791:media:pce14136:pce14136-math-0073 and urn:x-wiley:01407791:media:pce14136:pce14136-math-0074). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, urn:x-wiley:01407791:media:pce14136:pce14136-math-0075 and urn:x-wiley:01407791:media:pce14136:pce14136-math-0076 were little affected, while urn:x-wiley:01407791:media:pce14136:pce14136-math-0077 was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-07-30, letzte Änderung am 2023-09-22