Journal Article FZJ-2021-03392

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
From Microspikes to Stress Fibers: Actin Remodeling in Breast Acini Drives Myosin II-Mediated Basement Membrane Invasion

 ;  ;  ;  ;  ;  ;

2021
MDPI Basel

Cells 10(8), 1979 - () [10.3390/cells10081979]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The cellular mechanisms of basement membrane (BM) invasion remain poorly understood. We investigated the invasion-promoting mechanisms of actin cytoskeleton reorganization in BM-covered MCF10A breast acini. High-resolution confocal microscopy has characterized actin cell protrusion formation and function in response to tumor-resembling ECM stiffness and soluble EGF stimulation. Traction force microscopy quantified the mechanical BM stresses that invasion-triggered acini exerted on the BM–ECM interface. We demonstrate that acini use non-proteolytic actin microspikes as functional precursors of elongated protrusions to initiate BM penetration and ECM probing. Further, these microspikes mechanically widened the collagen IV pores to anchor within the BM scaffold via force-transmitting focal adhesions. Pre-invasive basal cells located at the BM–ECM interface exhibited predominantly cortical actin networks and actin microspikes. In response to pro-invasive conditions, these microspikes accumulated and converted subsequently into highly contractile stress fibers. The phenotypical switch to stress fiber cells matched spatiotemporally with emerging high BM stresses that were driven by actomyosin II contractility. The activation of proteolytic invadopodia with MT1-MMP occurred at later BM invasion stages and only in cells already disseminating into the ECM. Our study demonstrates that BM pore-widening filopodia bridge mechanical ECM probing function and contractility-driven BM weakening. Finally, these EMT-related cytoskeletal adaptations are critical mechanisms inducing the invasive transition of benign breast acini.

Classification:

Contributing Institute(s):
  1. Mechanobiologie (IBI-2)
Research Program(s):
  1. 5243 - Information Processing in Distributed Systems (POF4-524) (POF4-524)
  2. DFG project 273723265 - Mechanosensation und Mechanoreaktion in epidermalen Systemen (273723265)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-09-03, letzte Änderung am 2023-08-15


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)