Journal Article FZJ-2021-03501

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effects of the Nasal Cavity Complexity on the Pharyngeal Airway Fluid Mechanics: A Computational Study

 ;  ;  ;  ;

2021
Springer Heidelberg

Journal of digital imaging 34, 1120–1133 () [10.1007/s10278-021-00501-x]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The impact of the human nasal airway complexity on the pharyngeal airway fluid mechanics is investigated at inspiration. It is the aim to find a suitable degree of geometrical reduction that allows for an efficient segmentation of the human airways from cone-beam computed tomography images. The flow physics is simu- lated by a lattice-Boltzmann method on high-performance computers. For two patients, the flow field through the complete upper airway is compared to results obtained from three surface variants with continuously decreasing complexity. The most complex reduced airway model includes the middle and inferior turbinates, while the moderate model only features the inferior turbinates. In the simplest model, a pipe-like artificial structure is attached to the airway. For each model, the averaged pressure is computed at different cross sections. Furthermore, the flow fields are investigated by means of averaged velocity magnitudes, in-plane velocity vectors, and streamlines. By analyzing the averaged pressure loss from the nostrils to each cross section, it is found that only the most complex reduced models are capable of approximating the pressure distribution from the original geometries. In the moderate models, the geometry reductions lead to overpredictions of the pressure loss in the pharynx. Attaching a pipe-like structure leads to a higher deceleration of the incoming flow and underpredicted pressure losses and velocities, especially in the upper part of the pharynx. Dean-like vortices are observed in the moderate and pipe-like models, since their shape comes close to a 90°-bend elbow pipe.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) (HDS-LEE-20190612)

Appears in the scientific report 2021
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DEAL Springer ; Essential Science Indicators ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-09-14, letzte Änderung am 2021-11-30


Published on 2021-09-10. Available in OpenAccess from 2022-09-10.:
Volltext herunterladen PDF
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)