Journal Article FZJ-2021-03757

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions

 ;  ;  ;  ;

2021
MDPI Basel

Catalysts 11(10), 1183 - () [10.3390/catal11101183]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: In vitro enzyme cascades possess great benefits, such as their synthetic capabilities for complex molecules, no need for intermediate isolation, and the shift of unfavorable equilibria towards the products. Their performance, however, can be impaired by, for example, destabilizing or inhibitory interactions between the cascade components or incongruous reaction conditions. The optimization of such systems is therefore often inevitable but not an easy task. Many parameters such as the design of the synthesis route, the choice of enzymes, reaction conditions, or process design can alter the performance of an in vitro enzymatic cascade. Many strategies to tackle this complex task exist, ranging from experimental to in silico approaches and combinations of both. This review collates examples of various optimization strategies and their success. The feasibility of optimization goals, the influence of certain parameters and the usage of algorithm-based optimizations are discussed.

Classification:

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-10-05, last modified 2021-11-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)