Journal Article FZJ-2021-04322

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Dielectric Junction: Electrostatic Design for Charge Carrier Collection in Solar Cells

 ;  ;

2022
Wiley-VCH Weinheim

Solar RRL 6(1), 2100720 - () [10.1002/solr.202100720]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Conventional solar cells typically use doping of the involved semiconducting layers and work function differences between highly conductive contacts for the electrostatic design and the charge selectivity of the junction. In some halide perovskite solar cells, however, substantial variations in the permittivity of different organic and inorganic semiconducting layers strongly affect the electrostatic potential and thereby indirectly also the carrier concentrations, recombination rates, and eventually efficiencies of the device. Here, numerical simulations are used to study the implications of electrostatics on device performance for classical p−n junctions and p−i−n junctions, and for device geometries as observed in perovskite photovoltaics, where high-permittivity absorber layers are surrounded by low-permittivity and often also low-conductivity charge transport layers. The key principle of device design in materials with sufficiently high mobilities that are still dominated by defect-assisted recombination is the minimization of volume with similar densities of electrons and holes. In classical solar cells this is achieved by doping. For perovskites, the concept of a dielectric junction is proposed by the selection of charge transport layers with adapted permittivity if doping is not sufficient.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) (POF4-121)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-5
Publications database
Open Access

 Record created 2021-11-17, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)