Journal Article FZJ-2021-04810

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Multiple scattering and resolution effects in small-angle neutron scattering experiments calculated and corrected by the software package MuScatt

 ;  ;

2021
Wiley-Blackwell [S.l.]

Journal of applied crystallography 54(6), 1580 - 1593 () [10.1107/S1600576721009067]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: This article deals with multiple scattering effects that are important for the method of small-angle neutron scattering (SANS). It considers three channels for the coherent elastic, the incoherent elastic and the incoherent inelastic scattering processes. The first channel contains the desired information on the experiment. Its multiple scattering effects can be desmeared, as shown in the later sections of the article. The other two channels display a nearly constant background as a function of the scattering angle. The incoherent elastic scattering is treated by the theory of Chandrasekhar, allowing for multiple scattering even at large scattering angles. The transfer to a single representative thermalized wavelength by the inelastic scattering – as a simplification – is assumed to happen by a single scattering event. Once the transition to this altered wavelength has happened, further incoherent multiple scattering is considered. The first part of the paper deals with the multiple scattering effects of light water. In the later part of the article, deconvolution algorithms for multiple scattering and instrumental resolution of the elastic coherent signal as implemented in the program MuScatt are described. All of these considerations are interesting for both reactor-based instruments with velocity selectors and time-of-flight SANS instruments and may improve the reliability of the data treatment.

Keyword(s): Instrument and Method Development (1st) ; Instrument and Method Development (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Neutronenstreuung (JCNS-1)
  3. JCNS-4 (JCNS-4)
  4. Heinz Maier-Leibnitz Zentrum (MLZ)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)
  2. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
Experiment(s):
  1. KWS-1: Small angle scattering diffractometer (NL3b)
  2. KWS-3: Very small angle scattering diffractometer with focusing mirror (NL3auS)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-4
Institute Collections > JCNS > JCNS-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2021-12-01, last modified 2023-03-03


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)