Journal Article FZJ-2021-04880

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Two-dimensional Cahn–Hilliard simulations for coarsening kinetics of spinodal decomposition in binary mixtures

 ;  ;

2021
RSC Publ. Cambridge

Physical chemistry, chemical physics 23(43), 24823 - 24833 () [10.1039/D1CP03229A]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The evolution of the microstructure due to spinodal decomposition in phase separated mixtures has astrong impact on the final material properties. In the late stage of coarsening, the system ischaracterized by the growth of a single characteristic length scale LBCta. To understand thestructure–property relationship, the knowledge of the coarsening exponent aand the coarsening rateconstant Cis mandatory. Since the existing literature is not entirely consistent, we perform phase fieldsimulations based on the Cahn–Hilliard equation. We restrict ourselves to binary mixtures using asymmetric Flory–Huggins free energy and a constant composition-independent mobility term and showthat the coarsening for off-critical mixtures is slower than the expected t1/3-growth. Instead, we find atobe dependent on the mixture composition and associate this with the observed morphologies. Finally,we propose a model to describe the complete coarsening kinetics including the rate constant C.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IEK-11)
Research Program(s):
  1. 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) (POF4-121)
  2. DFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik (449539983)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; OpenAccess ; Allianz-Lizenz / DFG ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-2
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-11
Publications database
Open Access

 Record created 2021-12-02, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)