Journal Article FZJ-2021-05149

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Scatterometry Measurements With Scattered Light Imaging Enable New Insights Into the Nerve Fiber Architecture of the Brain

 ;  ;  ;  ;  ;

2021
Frontiers Research Foundation Lausanne

Frontiers in neuroanatomy 15, 767223 () [10.3389/fnana.2021.767223]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The correct reconstruction of individual (crossing) nerve fibers is a prerequisite when constructing a detailed network model of the brain. The recently developed technique Scattered Light Imaging (SLI) allows the reconstruction of crossing nerve fiber pathways in whole brain tissue samples with micrometer resolution: the individual fiber orientations are determined by illuminating unstained histological brain sections from different directions, measuring the transmitted scattered light under normal incidence, and studying the light intensity profiles of each pixel in the resulting image series. So far, SLI measurements were performed with a fixed polar angle of illumination and a small number of illumination directions, providing only an estimate of the nerve fiber directions and limited information about the underlying tissue structure. Here, we use a display with individually controllable light-emitting diodes to measure the full distribution of scattered light behind the sample (scattering pattern) for each image pixel at once, enabling scatterometry measurements of whole brain tissue samples. We compare our results to coherent Fourier scatterometry (raster-scanning the sample with a non-focused laser beam) and previous SLI measurements with fixed polar angle of illumination, using sections from a vervet monkey brain and human optic tracts. Finally, we present SLI scatterometry measurements of a human brain section with 3 μm in-plane resolution, demonstrating that the technique is a powerful approach to gain new insights into the nerve fiber architecture of the human brain.

Classification:

Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Research Program(s):
  1. 5254 - Neuroscientific Data Analytics and AI (POF4-525) (POF4-525)
  2. JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) (JL SMHB-2021-2027)
  3. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-12-10, last modified 2022-01-03


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)