Journal Article FZJ-2021-05261

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Extremely low-energy ARPES of quantum well states in cubic-GaN/AlN and GaAs/AlGaAs heterostructures

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Macmillan Publishers Limited, part of Springer Nature [London]

Scientific reports 11(1), 19081 () [10.1038/s41598-021-98569-6]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their electronic structure. So far, the most commonly used experimental techniques for this purpose have been all-optical spectroscopy methods that, however, are generally averaging in momentum space. Additional information can be gained by angle-resolved photoelectron spectroscopy (ARPES), which measures the electronic structure with momentum resolution. Here we report on the use of extremely low-energy ARPES (photon energy ~ 7 eV) to increase depth sensitivity and access buried QW states, located at 3 nm and 6 nm below the surface of cubic-GaN/AlN and GaAs/AlGaAs heterostructures, respectively. We find that the QW states in cubic-GaN/AlN can indeed be observed, but not their energy dispersion, because of the high surface roughness. The GaAs/AlGaAs QW states, on the other hand, are buried too deep to be detected by extremely low-energy ARPES. Since the sample surface is much flatter, the ARPES spectra of the GaAs/AlGaAs show distinct features in momentum space, which can be reconducted to the band structure of the topmost surface layer of the QW structure. Our results provide important information about the samples’ properties required to perform extremely low-energy ARPES experiments on electronic states buried in semiconductor heterostructures.

Classification:

Contributing Institute(s):
  1. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 5212 - Emergent Quantum Phenomena (POF4-521) (POF4-521)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > PGI > PGI-6
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-12-15, letzte Änderung am 2022-01-03


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)