Home > Publications database > Boundary Investigation of High-Temperature Co-Electrolysis Towards Direct CO2 electrolysis |
Journal Article | FZJ-2021-05327 |
; ; ; ; ; ;
2022
IOP Publishing
Bristol
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/31409 doi:10.1149/1945-7111/ac5e45
Abstract: In the temperature range of high temperature co-electrolysis of both steam and carbon dioxide, the reverse water-gas shift reaction (RWGS) takes place. Prior studies were conducted with a narrow gas composition range to investigate the role of RWGS during co-electrolysis. The results for steam electrolysis, CO2 electrolysis, and co-electrolysis caused different conclusions regarding the role of electrochemical CO2 and H2O conversion compared to RWGS during co-electrolysis. This work aims to resolve the role of CO2 conversion as part of RWGS in co-electrolysis. The boundary is characterized by AC and DC measurements over a broad gas composition range from CO2 electrolysis towards co-electrolysis with nearly 50%eq H2O. Especially, the electrochemical CO2 reduction and CO2 conversion in the RWGS are compared to clarify their role during co-electrolysis. The results revealed that gas composition determined the predominant reaction (H2O or CO2 reduction). The cell performance of co-electrolysis in the boundary region up to 5%eq H2O was similar to the performance of CO2 electrolysis. Up to 30%eq H2O, the performance increases with H2O concentration. Here, both CO2 and H2O electrolysis occur. Above 30%eq H2O, steam electrolysis and the RWGS reaction both dominate the co-electrolysis process.
![]() |
The record appears in these collections: |