Journal Article FZJ-2021-05353

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Critical Assessment of Structure-based Approaches to Improve Protein Resistance in Aqueous Ionic Liquids by Enzyme-wide Saturation Mutagenesis

 ;  ;  ;  ;

2022
Research Network of Computational and Structural Biotechnology (RNCSB) Gotenburg

Computational and structural biotechnology journal 20, 399-409 () [10.1016/j.csbj.2021.12.018]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes. Here, we systematically and rigorously evaluated the performance of 22 previously described structure-based approaches to increase enzyme resistance to aIL based on an experimental complete site-saturation mutagenesis library of BsLipA screened against four aIL. We show that, surprisingly, most of the approaches yield low gain in precision (GiP) values, particularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary properties substantially increases the precision of predicting relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots identified by rigidity theory additionally improves GiP for relevant positions up to 4-fold to ∼10 and sustains or increases GiP for relevant positions, resulting in a prediction precision of ∼90% compared to ∼9% in random mutagenesis. This combination should be applicable to other enzyme systems for guiding protein engineering approaches towards improved aIL resistance.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. John von Neumann - Institut für Computing (NIC)
  3. Strukturbiochemie (IBI-7)
  4. Bioinformatik (IBG-4)
Research Program(s):
  1. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)
  2. 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) (POF4-217)
  3. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  4. Forschergruppe Gohlke (hkf7_20200501) (hkf7_20200501)
  5. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-7
Institutssammlungen > IBG > IBG-4
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Institutssammlungen > JSC
Publikationsdatenbank
Open Access
NIC

 Datensatz erzeugt am 2021-12-17, letzte Änderung am 2023-01-28


OpenAccess:
1-s2.0-S2001037021005274-main - Volltext herunterladen PDF
P03v17_MS_TE_final - Volltext herunterladen PDF
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)