Journal Article FZJ-2021-05563

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries

 ;  ;  ;  ;  ;

2021
MDPI Basel

Nanomaterials 11(4), 1054 - () [10.3390/nano11041054]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Aqueous zinc-ion batteries (ZIBs) with the characteristics of low production costs and good safety have been regarded as ideal candidates for large-scale energy storage applications. However, the nonconductive and non-redox active polymer used as the binder in the traditional preparation of electrodes hinders the exposure of active sites and limits the diffusion of ions, compromising the energy density of the electrode in ZIBs. Herein, we fabricated vanadium pentoxide nanofibers/carbon nanotubes (V2O5/CNTs) hybrid films as binder-free cathodes for ZIBs. High ionic conductivity and electronic conductivity were enabled in the V2O5/CNTs film due to the porous structure of the film and the introduction of carbon nanotubes with high electronic conductivity. As a result, the batteries based on the V2O5/CNTs film exhibited a higher capacity of 390 mAh g−1 at 1 A g−1, as compared to batteries based on V2O5 (263 mAh g−1). Even at 5 A g−1, the battery based on the V2O5/CNTs film maintained a capacity of 250 mAh g−1 after 2000 cycles with a capacity retention of 94%. In addition, the V2O5/CNTs film electrode also showed a high energy/power density (e.g., 67 kW kg−1/267 Wh kg−1). The capacitance response and rapid diffusion coefficient of Zn2+ (~10−8 cm−2 s−1) can explain the excellent rate capability of V2O5/CNTs. The vanadium pentoxide nanofibers/carbon nanotubes hybrid film as binder-free cathodes showed a high capability and a stable cyclability, demonstrating that it is highly promising for large-scale energy storage applications

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IMD > IMD-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-1
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-12-24, letzte Änderung am 2024-07-11


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)