Journal Article FZJ-2021-05975

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Subcortical structures and visual divergent thinking: a resting-state functional MRI analysis

 ;  ;  ;  ;

2021
Springer Heidelberg

Brain structure & function 226(8), 2617 - 2627 () [10.1007/s00429-021-02355-z]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: An increasing number of studies have found that a few, specific subcortical regions are involved in creative visual divergent thinking. In addition, creative thinking is heavily reliant on the fronto-striatal dopaminergic pathways. This study aimed to explore whether spontaneous fluctuations in the subcortex, which contribute to our creative abilities, showed significant differences between individuals with different levels of creativity based on resting-state functional magnetic resonance imaging data. We calculated subcortical regions’ seed-wise and dynamic functional connectivity (dFC), and then examined the differences between the high and low visual creativity groups. Furthermore, the topological properties of the subcortical network were measured, and their relationship with creative visual divergent thinking was calculated using brain–behavior correlation analyses. The results showed that functional connectivity (FC) between the putamen, pallidum, and thalamus indicated group differences within the subcortex. Whole-brain FC results showed group differences across subcortical (i.e., the thalamus and pallidum) and cerebral regions (i.e., the insula, middle frontal gyrus, and middle temporal gyrus). In addition, subcortical FC demonstrated a positive correlation with visual divergent thinking scores across the pallidum, putamen, and thalamus. Our findings provide novel insights into the relationship between visual divergent thinking and the activities of the subcortex. It is likely that not only fronto-striatal dopaminergic pathways, but also “motor” pathways, are involved in creative visual divergent thinking processing.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 5252 - Brain Dysfunction and Plasticity (POF4-525) (POF4-525)

Appears in the scientific report 2022
Database coverage:
Medline ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DEAL Springer ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-12-27, letzte Änderung am 2023-01-23