Journal Article FZJ-2022-01369

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Phage Display-Derived Compounds Displace hACE2 from Its Complex with SARS-CoV-2 Spike Protein

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
MDPI Basel

Biomedicines 10(2), 441 - () [10.3390/biomedicines10020441]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Severe respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious beta-class coronavirus. Although vaccinations have shown high efficacy, the emergence of novel variants of concern (VOCs) has already exhibited traits of immune evasion. Thus, the development of tailored antiviral medications for patients with incomplete, inefficient, or non-existent immunization, is essential. The attachment of viral surface proteins to the cell surface is the first crucial step in the viral replication cycle, which for SARS-CoV-2 is mediated by the high affinity interaction of the viral trimeric spike with the host cell surface-located human angiotensin converting enzyme-2 (hACE2). Here, we used a novel and efficient next generation sequencing (NGS) supported phage display strategy for the selection of a set of SARS-CoV-2 receptor binding domain (RBD)-targeting peptide ligands that bind to the target protein with low µM to nM dissociation constants. Compound CVRBDL-3 inhibits the SARS-CoV-2 spike protein association to hACE2 in a concentration-dependent manner for pre- as well as post-complex formation conditions. Further rational optimization yielded a CVRBDL-3 based divalent compound, which demonstrated inhibitory efficacy with an IC50 value of 47 nM. The obtained compounds were not only efficient for the different spike constructs from the originally isolated “wt” SARS-CoV-2, but also for B.1.1.7 mutant trimeric spike protein. Our work demonstrates that phage display-derived peptide ligands are potential fusion inhibitors of viral cell entry. Moreover, we show that rational optimization of a combination of peptide sequences is a potential strategy in the further development of therapeutics for the treatment of acute COVID-19.

Classification:

Contributing Institute(s):
  1. Strukturbiochemie (IBI-7)
Research Program(s):
  1. 5244 - Information Processing in Neuronal Networks (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-7
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2022-02-18, last modified 2023-03-07


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)