Journal Article FZJ-2022-01728

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Alpha-Synuclein-Specific Naturally Occurring Antibodies Inhibit Aggregation In Vitro and In Vivo

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
MDPI Basel

Biomolecules 12(3), 469 - () [10.3390/biom12030469]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Parkinson’s disease (PD) is associated with motor and non-motor symptoms and characterized by aggregates of alpha-synuclein (αSyn). Naturally occurring antibodies (nAbs) are part of the innate immune system, produced without prior contact to their specific antigen, and polyreactive. The abundance of nAbs against αSyn is altered in patients with PD. In this work, we biophysically characterized nAbs against αSyn (nAbs-αSyn) and determined their biological effects. nAbs-αSyn were isolated from commercial intravenous immunoglobulins using column affinity purification. Biophysical properties were characterized using a battery of established in vitro assays. Biological effects were characterized in HEK293T cells transiently transfected with fluorescently tagged αSyn. Specific binding of nAbs-αSyn to monomeric αSyn was demonstrated by Dot blot, ELISA, and Surface Plasmon Resonance. nAbs-αSyn did not affect viability of HEK293T cells as reported by Cell Titer Blue and LDH Assays. nAbs-αSyn inhibited fibrillation of αSyn reported by the Thioflavin T aggregation assay. Altered fibril formation was confirmed with atomic force microscopy. In cells transfected with EGFP-tagged αSyn we observed reduced formation of aggresomes, perinuclear accumulations of αSyn aggregates. The results demonstrate that serum of healthy individuals contains nAbs that specifically bind αSyn and inhibit aggregation of αSyn in vitro. The addition of nAbs-αSyn to cultured cells affects intracellular αSyn aggregates. These findings help understanding the role of the innate immune systems for the pathogenesis of PD and suggest that systemic αSyn binding agents could potentially affect neuronal αSyn pathology.

Classification:

Contributing Institute(s):
  1. Strukturbiochemie (IBI-7)
  2. Jara-Institut Quantum Information (INM-11)
Research Program(s):
  1. 5244 - Information Processing in Neuronal Networks (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-11
Institutssammlungen > IBI > IBI-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-03-23, letzte Änderung am 2023-01-23


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)