Journal Article FZJ-2022-01759

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Understanding the Origin of Thermal Annealing Effects in Low‐Temperature Amorphous Silicon Films and Solar Cells

 ;  ;  ;  ;

2022
Wiley-VCH Weinheim

Physica status solidi / A 219(9), 2100451 - () [10.1002/pssa.202100451]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: A detailed investigation of the effects of prolonged postdeposition annealing on the performance of amorphous silicon (a-Si:H) solar cells and the properties of individual a-Si:H layers that are fabricated at low temperature of 120 °C is presented. A substantial improvement in all parameters of the current–voltage curves of these solar cells is observed upon annealing, consistent with an improvement in the collection voltage of the solar cells. Modifications of p-type layers during deposition of the solar cells are found to make no significant contribution to the annealing behavior of solar cells, while variations in the properties of n-type and intrinsic layers contribute substantially. The results indicate that the largest contribution to the annealing effect originates from changes in the electron μτ-product in the intrinsic absorber layer upon annealing, while changes in hole μτ-products have a minor contribution to the annealing effect in the solar cell. Besides a lack of significant changes in the number of recombination centers upon annealing, an improvement in the external quantum efficiency curves upon annealing may be accurately reproduced in computer simulations by assuming an increase in the band mobilities of both electrons and holes.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-5
Publications database
Open Access

 Record created 2022-03-25, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)