Journal Article FZJ-2022-01880

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nutrient dynamics during composting of human excreta, cattle manure, and organic waste affected by biochar

 ;  ;  ;  ;  ;  ;  ;

2022
Wiley Hoboken, NJ

Journal of environmental quality 51(1), 19 - 32 () [10.1002/jeq2.20312]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Ecological sanitation via thermophilic composting could be a promising solution to the lack of sanitation and limited access to fertilizers, particularly in developing countries. Here, we conducted a 185-d thermophilic composting experiment with human excreta, and separately with cattle manure, mixed with kitchen scraps, teff [Eragrostis tef (Zuccagni) Trotter] straw, sawdust, and biochar (BC) by using an appropriate-technology approach. We followed the dynamics of the most important macronutrients (N, P, K), temperature, moisture, pH, electrical conductivity, cation exchange capacity, as well as content of organic matter, organic C, Ca, Mg, and micronutrients throughout the process. Low N (<47%), P (<9%), K (<11%), Ca (<18%), and Mg (<21%) losses and the temperature profile indicated a well-functioning thermophilic composting process. Compost temperature was >60 °C for 7, 6, 5, and 8 consecutive days for treatments containing human excreta, human excreta amended with BC, cattle manure, and cattle manure amended with BC, respectively, suggesting a final compost product free of pathogens. The compost mixture with cattle manure and BC reached a significantly higher temperature than the same variant without BC, with a maximum value of 65.9 °C on Day 6. For all treatments, final germination index values >100% indicated compost maturity and the absence of phytotoxic substances. Biochar addition reduced losses of organic matter (18−23%), C (33−42%), and N (49−100%) and decreased the amount of extractable NO3− (32−36%) in the final compost. The tested ecological sanitation concept via thermophilic composting is thus a promising strategy to improve access to cheap fertilizer by safe and sustainable sanitation and waste management.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2022-04-11, last modified 2023-05-10