Journal Article FZJ-2022-02719

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Zinc loading in urea-formaldehyde nanocomposites increases nitrogen and zinc micronutrient fertilization efficiencies in poor sand substrate

 ;  ;  ;  ;  ;  ;  ;

2022
Elsevier Science Amsterdam [u.a.]

The science of the total environment 841, 156688 - () [10.1016/j.scitotenv.2022.156688]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Agricultural output needs significant increases to feed the growing population. Fertilizers are essential for plant production systems, with nitrogen (N) being the most limiting nutrient for plant growth. It is commonly supplied to crops as urea. Still, due to volatilization, up to 50 % of the total N application is lost. Slow or controlled release fertilizers are being developed to reduce these losses. The co-application of zinc (Zn) as a micronutrient can increase N absorption. Thus, we hypothesize that the controlled delivery of both nutrients (N and Zn) in an integrated system can improve uptake efficiency. Here we demonstrate an optimized fertilizer nanocomposite based on urea:urea-formaldehyde matrix loaded with ZnSO4 or ZnO. This nanocomposite effectively stimulates maize development, with consequent adequate N uptake, in an extreme condition – a very nutrient-poor sand substrate. Our results indicate that the Zn co-application is beneficial for plant development. However, there were advantages for ZnO due to its high Zn content. We discuss that the dispersion favors the Zn delivery as the nanoparticulated oxide in the matrix. Concerning maize development, we found that root morphology is altered in the presence of the fertilizer nanocomposite. Increased root length and surface area may improve soil nutrient uptake, potentially accompanied by increased root exudation of essential compounds for N release from the composite structure.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-07-12, letzte Änderung am 2023-01-23


Published on 2022-06-15. Available in OpenAccess from 2024-06-15.:
Volltext herunterladen DOCX
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)