Journal Article FZJ-2022-02887

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
On Generalized Schürmann Entropy Estimators



2022
MDPI Basel

Entropy 24(5), 680 - () [10.3390/e24050680]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We present a new class of estimators of Shannon entropy for severely undersampleddiscrete distributions. It is based on a generalization of an estimator proposed by T. Schürmann,which itself is a generalization of an estimator proposed by myself.For a special set of parameters,they are completely free of bias and have a finite variance, something which is widely believedto be impossible. We present also detailed numerical tests, where we compare them with otherrecent estimators and with exact results, and point out a clash with Bayesian estimators for mutualinformation.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2022-07-28, last modified 2023-03-07


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)