Journal Article FZJ-2022-03031

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
CellSium – versatile cell simulator for microcolony ground truth generation

 ;  ;  ;  ;  ;

2022
Oxford University Press Oxford

Bioinformatics advances 2(1), vbac053 () [10.1093/bioadv/vbac053]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: To train deep learning based segmentation models, large ground truth data sets are needed. To address this need in microfluidic live-cell imaging, we present CellSium, a flexibly configurable cell simulator built to synthesize realistic image sequences of bacterial microcolonies growing in monolayers. We illustrate that the simulated images are suitable for training neural networks. Synthetic time-lapse videos with and without fluorescence, using programmable cell growth models, and simulation-ready 3D colony geometries for computational fluid dynamics (CFD) are also supported.

Classification:

Note: Funding: - Deutsche Forschungsgemeinschaft [WI 1705/16-2], [491111487]- the President’s Initiative and Networking Funds of the Helmholtz Association of German Research Centres [SATOMI ZT-I-PF-04-011]- Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE)

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) (POF4-217)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-1
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-08-11, letzte Änderung am 2024-03-11