Journal Article FZJ-2022-03055

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
All-Solid-State Li Batteries with NCM–Garnet-Based Composite Cathodes: The Impact of NCM Composition on Material Compatibility

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
ACS Publications Washington, DC

ACS applied energy materials 5(6), 6913 - 6926 () [10.1021/acsaem.2c00533]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Garnet-based all-solid-state batteries (ASBs) with high energy density require composite cathodes with high areal loading and high-capacity cathode active materials. While all ceramic cathodes can typically be manufactured via cosintering, the elevated temperatures necessary for this process pose challenges with respect to material compatibility. High-capacity cathode active materials like Ni-rich LiNixCoyMn1–x–yO2 (NCM) show insufficient material compatibility toward the solid electrolyte Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO:Ta) during cosintering, leading to the formation of highly resistive interphases. We investigated this secondary phase formation both experimentally and via density functional theory calculation to get a mechanistic understanding of the cosintering behavior of LLZO:Ta with NCM111 and Ni-rich NCM811. Furthermore, we employed B doping of both NCM materials in order to assess its impact on the cation interchange and subsequent secondary phase formation. While secondary phases were formed for all four NCM materials, their onset temperature, nature, and amount strongly depend on the NCM composition and doping. Surprisingly, Ni-rich NCM811 turned out to be the most promising cathode active material for the combination with garnet-type LLZO:Ta. As proof of concept, fully inorganic, ceramic all-solid-state lithium batteries featuring only a Li-metal anode, an LLZO:Ta separator, and a composite cathode, consisting of LLZO:Ta, Li3BO3, and NCM811, were prepared by conventional sintering. The purely inorganic full cells delivered a high specific areal discharge capacity of 0.7 mA h cm–2 in the initial cycle.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)

Appears in the scientific report 2022
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IMD > IMD-2
Institutssammlungen > IMD > IMD-4
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-12
IEK > IEK-1
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-08-13, letzte Änderung am 2024-07-12


Published on 2022-06-08. Available in OpenAccess from 2023-06-08.:
Volltext herunterladen PDF
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)