Journal Article FZJ-2022-03320

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microfluidic single‐cell scale‐down bioreactors: A proof‐of‐concept for the growth of Corynebacterium glutamicum at oscillating pH values

 ;  ;  ;  ;

2022
Wiley New York, NY [u.a.]

Biotechnology & bioengineering 119(11), 3194-3209 () [10.1002/bit.28208]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: In large-scale bioreactors, gradients in cultivation parameters such as oxygen, substrate, and pH result in fluctuating cell environments. pH fluctuations were identified as a critical parameter for bioprocess performance. Traditionally, scale-down systems at the laboratory scale are used to analyze the effects of fluctuating pH values on strains and thus process performance. Here, we demonstrate the application of dynamic microfluidic single-cell cultivation (dMSCC) as a novel scale-down system for the characterization of Corynebacterium glutamicum growth using oscillating pH conditions as a model stress factor. A detailed comparison between two-compartment reactor (two-CR) scale-down experiments and dMSCC was performed for one specific pH oscillation between reference pH 7 (~8 min) and disturbed pH 6 (~2 min). Similar reductions in growth rates were observed in both systems (dMSCC 21% and two-CR 27%) compared to undisturbed cultivation at pH 7. Afterward, systematic experiments at symmetric and asymmetric pH oscillations, between pH ranges of 4–6 and 8–11 and different intervals from 1 to 20 min, were performed to demonstrate the unique application range and throughput of the dMSCC system. Finally, the strength of the dMSCC application was demonstrated by mimicking fluctuating environmental conditions of a putative large-scale bioprocess, which is difficult to conduct using two-CRs

Classification:

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) (POF4-217)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-09-12, last modified 2023-01-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)