Contribution to a conference proceedings/Contribution to a book FZJ-2022-03387

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Quantum Support Vector Regression for Biophysical Variable Estimation in Remote Sensing

 ;  ;  ;  ;  ;  ;

2022
IEEE
ISBN: 978-1-6654-2792-0

IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IGARSS 2022, Kuala LumpurKuala Lumpur, Malaysia, 17 Jul 2022 - 22 Jul 20222022-07-172022-07-22 IEEE 4903-4906 () [10.1109/IGARSS46834.2022.9883963]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Regression analysis has a crucial role in many Earth Observation (EO) applications. The increasing availability and recent development of new computing technologies motivate further research to expand the capabilities and enhance the performance of data analysis algorithms. In this paper, the biophysical variable estimation problem is addressed. A novel approach is proposed, which consists in a reformulated Support Vector Regression (SVR) and leverages Quantum Annealing (QA). In particular, the SVR optimization problem is reframed to a Quadratic Unconstrained Binary Optimization (QUBO) problem. The algorithm is then tested on the D-Wave Advantage quantum annealer. The experiments presented in this paper show good results, despite current hardware limitations, suggesting that this approach is viable and has great potential.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Bücher > Buchbeitrag
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-09-18, letzte Änderung am 2023-05-02


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)