Journal Article FZJ-2022-04119

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm

 ;  ;  ;  ;

2022
North Holland Publ. Co. Amsterdam

Computer physics communications 278, 108411 () [10.1016/j.cpc.2022.108411]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We study large-scale applications using a GPU-accelerated version of the massively parallel Jülich universal quantum computer simulator (JUQCS–G). First, we benchmark JUWELS Booster, a GPU cluster with 3744 NVIDIA A100 Tensor Core GPUs. Then, we use JUQCS–G to study the relation between quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA). We find that a very coarsely discretized version of QA, termed approximate quantum annealing (AQA), performs surprisingly well in comparison to the QAOA. It can either be used to initialize the QAOA, or to avoid the costly optimization procedure altogether. Furthermore, we study the scaling of the success probability when using AQA for problems with 30 to 40 qubits. We find that the case with the largest discretization error scales most favorably, surpassing the best result obtained from the QAOA.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-11-02, letzte Änderung am 2023-01-23