Journal Article FZJ-2023-01168

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Cost-optimized design point and operating strategy of polymer electrolyte membrane electrolyzers

 ;  ;  ;  ;

2023
Elsevier New York, NY [u.a.]

International journal of hydrogen energy 48(33), 12185-12199 () [10.1016/j.ijhydene.2022.11.288]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Green hydrogen is a key solution for reducing CO2 emissions in various industrial applications, but high production costs continue to hinder its market penetration today. Better competitiveness is linked to lower investment costs and higher efficiency of the conversion technologies, among which polymer electrolyte membrane electrolysis seems to be attractive. Although new manufacturing techniques and materials can help achieve these goals, a less frequently investigated approach is the optimization of the design point and operating strategy of electrolyzers. This means in particular that the questions of how often a system should be operated and which cell voltage should be applied must be answered. As existing techno-economic models feature gaps, which means that these questions cannot be adequately answered, a modified model is introduced here. In this model, different technical parameters are implemented and correlated to each other in order to simulate the lowest possible levelized cost of hydrogen and extract the required designs and strategies from this. In each case investigated, the recommended cost-based cell voltage that should be applied to the system is surprisingly low compared to the assumptions made in previous publications. Depending on the case, the cell voltage is in a range between 1.6 V and 1.8 V, with an annual operation of 2000–8000 h. The wide range of results clearly indicate how individual the design and operation must be, but with efficiency gains of several percent, the effect of optimization will be indispensable in the future.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-14)
Research Program(s):
  1. 1231 - Electrochemistry for Hydrogen (POF4-123) (POF4-123)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IET > IET-4
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
IEK > IEK-14
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-02-09, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)