Journal Article FZJ-2023-01539

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Systematic analysis of prophage elements in actinobacterial genomes reveals a remarkable phylogenetic diversity

 ;  ;  ;

2023
Macmillan Publishers Limited, part of Springer Nature [London]

Scientific reports 13(1), 4410 () [10.1038/s41598-023-30829-z]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Actinobacteria represent one of the largest bacterial phyla harboring many species of high medical, biotechnological and ecological relevance. Prophage elements are major contributors to bacterial genome diversity and were shown to significantly shape bacterial fitness and host-microbe interactions. In this study, we performed a systematic analysis of prophage elements in 2406 complete actinobacterial genomes. Overall, 2106 prophage elements were predicted to be present in about 50% (1172/2406) of the analyzed datasets. Interestingly, these identified sequences compose a high prevalence of cryptic prophage elements, indicating genetic decay and domestication. Analysis of the sequence relationship of predicted prophages with known actinobacteriophage genomes revealed an exceptional high phylogenetic diversity of prophage elements. As a trend, we observed a higher prevalence of prophage elements in vicinity to the terminus. Analysis of the prophage-encoded gene functions revealed that prophage sequences significantly contribute to the bacterial antiviral immune system, but no biosynthetic gene clusters involved in the synthesis of known antiphage molecules were identified in prophage genomes. Overall, the current study highlights the remarkable diversity of prophages in actinobacterial genomes, with highly divergent prophages in actinobacterial genomes and thus provides an important basis for further investigation of phage-host interactions in this important bacterial phylum.

Classification:

Note: IBT-1

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2023-03-22, last modified 2023-09-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)