Journal Article FZJ-2023-02292

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Generating Views Using Atmospheric Correction for Contrastive Self-Supervised Learning of Multispectral Images

 ;  ;  ;

2023
IEEE New York, NY

IEEE geoscience and remote sensing letters 20(2502305), 1 - 5 () [10.1109/LGRS.2023.3274493]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: In remote sensing, plenty of multispectral images are publicly available from various landcover satellite missions. Contrastive self-supervised learning is commonly applied to unlabeled data but relies on domain-specific transformations used for learning. When focusing on vegetation, standard transformations from image processing cannot be applied to the near-infrared (NIR) channel, which carries valuable information about the vegetation state. Therefore, we use contrastive learning, relying on different views of unlabeled, multispectral images to obtain a pretrained model to improve the accuracy scores on small-sized remote sensing datasets. This study presents the generation of additional views tailored to remote sensing images using atmospheric correction as an alternative transformation to color jittering. The purpose of the atmospheric transformation is to provide a physically consistent transformation. The proposed transformation can be easily integrated with multiple channels to exploit spectral signatures of objects. Our approach can be applied to other remote sensing tasks. Using this transformation leads to improved classification accuracy of up to 6%.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. Deep Learning for Air Quality and Climate Forecasts (deepacf_20191101) (deepacf_20191101)
  3. Earth System Data Exploration (ESDE) (ESDE)
  4. AI Strategy for Earth system data (kiste_20200501) (kiste_20200501)

Appears in the scientific report 2023
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-06-15, letzte Änderung am 2023-10-27


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)