Preprint FZJ-2024-01958

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Facilitating the sharing of electrophysiology data analysis results through in-depth provenance capture

 ;  ;  ;  ;

2023
arXiv

arXiv () [10.48550/ARXIV.2311.09672]

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Abstract: Scientific research demands reproducibility and transparency, particularly in data-intensive fields like electrophysiology. Electrophysiology data is typically analyzed using scripts that generate output files, including figures. Handling these results poses several challenges due to the complexity and interactivity of the analysis process. These stem from the difficulty to discern the analysis steps, parameters, and data flow from the results, making knowledge transfer and findability challenging in collaborative settings. Provenance information tracks data lineage and processes applied to it, and provenance capture during the execution of an analysis script can address those challenges. We present Alpaca (Automated Lightweight Provenance Capture), a tool that captures fine-grained provenance information with minimal user intervention when running data analysis pipelines implemented in Python scripts. Alpaca records inputs, outputs, and function parameters and structures information according to the W3C PROV standard. We demonstrate the tool using a realistic use case involving multichannel local field potential recordings of a neurophysiological experiment, highlighting how the tool makes result details known in a standardized manner in order to address the challenges of the analysis process. Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will improve research reproducibility and facilitate sharing the results of data analyses.

Keyword(s): Neurons and Cognition (q-bio.NC) ; FOS: Biological sciences


Contributing Institute(s):
  1. Computational and Systems Neuroscience (IAS-6)
  2. Jara-Institut Brain structure-function relationships (INM-10)
  3. Computational and Systems Neuroscience (INM-6)
Research Program(s):
  1. 5235 - Digitization of Neuroscience and User-Community Building (POF4-523) (POF4-523)
  2. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  3. Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812) (iBehave-20220812)
  4. JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) (JL SMHB-2021-2027)
  5. HAF - Helmholtz Analytics Framework (ZT-I-0003) (ZT-I-0003)
  6. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > INM > INM-10
Institutssammlungen > IAS > IAS-6
Institutssammlungen > INM > INM-6
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-03-15, letzte Änderung am 2025-02-03


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)