Journal Article FZJ-2024-05124

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopy

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2024
WILEY-VCH Verlag GmbH & Co. KGaA Weinheim

Small Methods 8(12), 2400598 () [10.1002/smtd.202400598]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Lattice strain in crystals can be exploited to effectively tune their physical properties. In microscopic structures, experimental access to the full strain tensor with spatial resolution at the (sub-)micrometer scale is at the same time very interesting and challenging. In this work, how scanning X-ray diffraction microscopy, an emerging model-free method based on synchrotron radiation, can shed light on the complex, anisotropic deformation landscape within three dimensional (3D) microstructures is shown. This technique allows the reconstruction of all lattice parameters within any type of crystal with submicron spatial resolution and requires no sample preparation. Consequently, the local state of deformation can be fully quantified. Exploiting this capability, all components of the strain tensor in a suspended, strained Ge1 − xSnx /Ge microdisk are mapped. Subtle elastic deformations are unambiguously correlated with structural defects, 3D microstructure geometry, and chemical variations, as verified by comparison with complementary electron microscopy and finite element simulations. The methodology described here is applicable to a wide range of fields, from bioengineering to metallurgy and semiconductor research.

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. JARA Institut Green IT (PGI-10)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)
  2. DFG project G:(GEPRIS)299480227 - SiGeSn Laser für die Silizium Photonik (299480227) (299480227)

Appears in the scientific report 2024
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-10
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database
Open Access

 Record created 2024-08-01, last modified 2025-02-03


Published on 2024-12-19. Available in OpenAccess from 2025-12-19.:
Download fulltext PDF
(additional files)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)