Journal Article FZJ-2024-05420

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Enhancing Semantic Segmentation in High-Resolution TEM Images: A Comparative Study of Batch Normalization and Instance Normalization

 ;

2025
Oxford University Press Oxford

Microscopy and microanalysis 31(1), ozae093 () [10.1093/mam/ozae093]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Integrating deep learning into image analysis for transmission electron microscopy (TEM) holds significant promise for advancing materials science and nanotechnology. Deep learning is able to enhance image quality, to automate feature detection, and to accelerate data analysis, addressing the complex nature of TEM datasets. This capability is crucial for precise and efficient characterization of details on the nano—and microscale, e.g., facilitating more accurate and high-throughput analysis of nanoparticle structures. This study investigates the influence of batch normalization (BN) and instance normalization (IN) on the performance of deep learning models for semantic segmentation of high-resolution TEM images. Using U-Net and ResNet architectures, we trained models on two different datasets. Our results demonstrate that IN consistently outperforms BN, yielding higher Dice scores and Intersection over Union metrics. These findings underscore the necessity of selecting appropriate normalization methods to maximize the performance of deep learning models applied to TEM images.

Classification:

Contributing Institute(s):
  1. Materials Data Science and Informatics (IAS-9)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-9
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-09-09, letzte Änderung am 2025-03-10


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)